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FOSTER'S MARKOV CHAIN THEOREMS IN CONTINUOUS TIME
by
Rupert G. Miller, Jr.

1. Introduction

Let (xt], teTs=[0,©), bean irreducible Markov chain in contin-
uous time with state space I = {0,1,2,...}. The stationary transition
probability matrix P(t) =( Py J(t)) is assumed to be measurable and

satisfy

pid(t)

v

o, Zpij(t)sl’ i, JeI ,
J
(1.1)

P(t+s) = P(t) P(s), P(O+) = I ,

for all t, s € T. In addition, the states are assumed to be stable;

i.e.,
' Py (t)-1
0> pii (o) = ti: t = qii = - qi > -, ierI ? '
(1.2) %
pyy(t) i
0<p,,'(0) = 1im =q,<+w, 143e1 .
1) £40 t 1)

The matrix Q = (q,,) is called the Q-matrix or infinitesimal generator
13

matrix of the process, and it is assumed to be conservative, i.e.,

Z (11‘1 =0, 1 € I. For eimplicity, this type of Markov chain will be
rgrerred to as a simple continuous time Markov chain (SCMC). A thorough
treatise on the properties of a SCMC is contained in [1].

In [8], [9] the solutions to the equations y Q = O were inves-

tigated. These stationarity equations are obtained by setting the
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derivatives equal to zero in the forward Kolmogorov equations P'(t) =
P(t)Q, and are the continuous time analog of the stationarity equations
XP = x for a discrete time Markov chain (with stationary one-step
transition probability matrix P = (p1 J))’ In particular, it was shown
that, under the minimality assumption described below, a NSC for the
SCMC to be positive recurrent is for the equations yQ = 0 to have a
convergent, positive solution y = (yo,yl,y2 s+++). The solution is
unique (up to a multiplicative constant):
(1.3) Yy =%y = tlimw pn(t) s ieI .
In [9] yQ = 0 was also shown to have a unique, positive solution in a
null recurrent chain, and for any recurrent chain (positive or null) the
relationship between the unique stationary measures of the SCMC and its
imbedded discrete time Markov chain was obtained.

The analogous stationarity theorem for positive recurrent chains
in discrete time is due to Foster [l4] with an earlier, less general
version being given by Feller [3], p. 325 (see also Chung [1], p. 33).
Foster also gives three additional theorems on conditions for recurrence,
ergodicity, etc. in a discrete time chain. The purpose of this paper
is to extend these additional theorems to continuous time.

The minimality assumption referred to above which is necessary for J

the validity of the preceding theorems in continuous time is:

Minimality Assumption: The SCMC is uniquely defined by its Q-matrix;

i.e., the minimal process is an honest process (see [1] for details).

It will be necessary to impose this assumption in Theorem 2 below but
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will not be needed in Theorem 1. It excludes from consideration those
processes which can explode to + » 1in finite time. Various necessary
and sufficient conditions on the Q-matrix for the minimslity assumption
to hold have been derived and can be found elsewhere. For reference,

see Chung [1] and Reuter [10].

2. Results

In the proofs of this section it will be necessary to refer to the
imbedded chain of the SCMC. This is the irreducible (but possibly
periodic) discrete time Markov chain [Xn], n=0,1,2, «--, with

stationary transition probability metrix P = (pi J) where

(2.1)

pii=o » 1el

The imbedded Markov chain [xn] simply records the sequence of states
through which the SCMC passes without regard to the amount of time re-

Quired for the transitions.

Theorem 1: (a) The SCMC {Xt] is recurrent if there exists a sequence
zZ = (zo,zl,ze,...) such that (i) 2 -+ a8 n-o+« and (11)
Qz < 0 except for the first coordinate.

(b) A NSC for the SCMC [Xt} to be non-recurrent is that
there exist a bounded non-constant sequence 2z = ( NIV YEE .) such

that Q2 = 0 except for the first coordinate.

Proof: The proofs of (a) and (b) are immediate and can be given together.

The system of inequalities or equalities Qz <0, = 0 can be written as

’

e et
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(2.2) Soo=q2 14oerl

gy 10 =
Division by 9 yields
oo
(2.3) L P2y S =2y , 140el
J=o ¢
where P = (pi J) is the transition matrix of the imbedded chain. Under
the conditions on 2z in (a) the system of inequalities (2.3) implies
recurrence for the imbedded chain by Theorem 5 of [4]. Similarly, under
the conditions on 2z 1in (b) the system of equations (2.3) is a NSC for
the transience of the imbedded chain by Theorem 4 of [4]. But the
recurrence or transience of the imbedded chain is identical to the re-
currence or non-recurrence,respectively, of the SCMC. Recurrence is
independent of the time component. ||

The term "non-recurrent" rather than "transient" is used here in
dealing with a SCMC because of the two possible types of path function
behavior. A SCMC can be non-explosive (i.e., satisfy the minimality
assumption) but have transient states in the sense that a return to
each hes probability less than one, or it can be explosive and reach
+  in finite time with positive probability. In both cases the states
of the imbedded chain are transient.

Note that it is not necessary to impose the minimality assumption
in Theorem 1. The fact that the imbedded chain has not been defined
beyond the first infinity does not cause any difficulty. Should Qz =0
not have.a bounded non-constant solution or Qz < O have a solution

whose coordinates tend to + », the imbedded chain 1s recurrent, and

)
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by necessity the SCMC is uniquely defined. Should Qz = 0 have a
bounded non-constant solution, the imbedded chain is transient; the SCMC
is then either explosive or non-explosive and transient.

This theorem, particularly part (b), is motivated by the following
consideration. Let f

io
imbedded chain) starts in state i, it reaches state 0 eventually.

be the probability that if the SCMC (or its

Ir f

00 is defined to be 1, then the f satisfy the equations

10
(-}

(2.4) DPyyfon =T 1#0e€l
Jgo 13730 T 10

In a recurrent chain fi =1, but in a transient chain fio # l, 8o

0
the f,, constitute a bounded, non-constant solution to (2.4).

In an earlier paper [6] Karlin and McGregor extended Foster's
Theorems 4 and 5 to birth and death processes. Utilizing the special
structure of these processes they also established necessity in part

(a). This does not seem to be true in general (see [4]).

Theorem 2: Under the minimality assumption a NSC that the SCMC be positive

recurrent 1s that the inequalities

(-]
(2'5) Z quzJ _<_ - l P 1 ;‘0 € I F)
J=0
(L.e., Q < -1 except for the first coordinate) have a non-negative
solution 2z which satisfies
00

.6 ®
(2.6) stl quzJ < +

(1.e., . I(Qz)ol <+ ®).
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Proof: (Necessity) Let m, be the expected time it takes the SCMC

to reach state (0 from state 1 q( Oel; 0. For a positive

moo =

recurrent SCMC mio < + ©. These expected first-passage times satisfy

the equations

l -]

(2.7) m.==—+ 3 Dp,.m  , 140e1 ,
10 Q, §= 13730

where the first term on the right is the expected length of time spent

in state 1 and the second term is the expected time to reach 0 after

the process leaves state 1. Multiplication of (2.7) by Q and

rearrangement of terms ylelds (2.5) with equality for 2z, =nm,..

J Jo
Since the chain is positive recurrent, the mean recurrence time to
state O 1is finite; i.e.,
-]

1
(2.8) %+J§o pOJm.jO<+°° R
which implies (2.6).

(Sufficiency) Rearrangement of terms in (2.5) gives

< 1
(2.9) P,,2, <2z, - =— 140e€el
Jgo Wy="1g

el

wWithout loss of generality assume zo = 0. Consider the iterative

inequality obtained by applying FP- = (piJ‘) ) to z:

S it s 5
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00 -1 -1
(2.120) < kZ.:l pﬂ(‘" )(zk ) + P1(n ) JZ Pos?;

-1 -1) 1 1
= Z pi(n ) - kgo 11(:n )qk +p (n )(qo x)

where X\ = Z
J=0

The (n-1)-fold interation of this inequality produces the following

pOJ 3 <+w by (2.6).

inequality:

n-l =~
(2.11)  ox Z py5Vey < Z Pacit L) 2 2 9

(a;-l-).) Z pi(v) .

v=1

o

The series Z Z Py )/qk is divergent by the minimality assumption
vsl k=0

since it is the expected time required to make an infinite number of
transitions after leaving state 1. For a rigorous proof see Theorem
II. 19.1, Corollary 1, of [1]. But this means that Z pi(v) must be
divergent 1in order to preserve the non-negativity in ‘(ré-lll) Hence,
the SCMC is recurrent.

To establish positive recurrence sum the inequality (2.10) for

na= 2,0.0’N+1.

N+l = © N o
(n) (n) - (n) 1
(-12) n‘:e .1;0 Py %y = Z:l kz Pix n; kz-:o Pl g

N
1
+ (a(—) + 1) n; pién) .
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Rearrangement and cancellation produces
(n) v . (N+1) 1 (n)
2(n§1 n)—<zp“‘k kgop z+(‘lo*)')zlpi

(2.13)

< ) + (l- + ) n) .
- k§0 Pk T g n);l o’

Divide both sides of (2.13) by z pi(n) (which is positive for N
n=1

sufficiently large) for any hel. As N —« Fatou's lemma gives

N
o ) pngn) )) pién)
(2.24) ¥ | 1m B LoEden um 22
k=0 |N - )%~ % N e 5 (n)
Y Pip 2 Piy
n=l n

the right hand side reducing to a single term since 2 Pihn) + o

in a recurrent chain. These limits exist by the Doeblin ratio limit

theorem and have been evaluated by Chung. For a recurrent chain

3 2, "
P
(2.15) 1m  B2L - Ak
Noe § o () tm

2 Pin

for any £ € I, where ‘p* £k is the expected number of visits to state
k between visits to state l(‘p*"‘M = 1), (For reference see [1],

Sec. I.9). From (2.1%) and (2.15)

(2.16) P, < (4 ® .
k§0‘ lqu % llO
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Derman [2] showed that for a recurrent chain the ‘p*‘i, i=0,1,2,...,
constitute the unique (except for a multiplicative constant) positive
golution of the equations xP = x. Ina recurrent chain the unique
solutions of yQ =0 and xP = x are related by Yy = xi/ a (see
Theorem 3 of [9]). Thus, by (2.16) Yy = lp*li/qi is a positive,
convergent solution to yQ = O 8o the SCMC is positive recurrent (by

Theorem 1 of [9]). ||

The motivation for this theorem 1s clearly contained in the necessity

part of the proof where (2.5) holds with equality for z, =m,.. That

J Jo
the equalities can be replaced with inequalities in the sufficiency
condition is a trivial bonus of the proof.

The minimality assumption is essential for the validity of the
sufficiency part of the theorem. For a counter-example without it take

& birth and death process with

-] 0 l
(2.17) B, =0, p, <+w, Y <+ , .
0 ngo n n=0 )'npn

vhere o = A\t xn_l/pl “** My B =1,2,...,p) = 1. Such a birth

and death process is explosive (see [5]). However,

2 =0,

(2.18)

n xo n 1 v
2 = 2 — - — P, » n=12,...,
n+l 1 v; xvpv vgl va v ugo u

satisfies the equations qisz =-1, 1=1,2,..., for any Z.
o =0

(Z 442 < + = holds trivially.) For 2z, sufficiently large 2
) JJ 1 n

will be positive for all n since the negative series in (2.18) is

convergent.

- v
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Kingman (7] proved this theorem for bounded q1 by a different
method. 8Since boundedness of the q:l guarantees the minimality
assumption but is not necessary for it to hold, Theorem 2 would con-
stitute an extension of Kingman's result. An application of the suf-

ficiency condition to parallel queues can also be found in [7].

10




et e e

'

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

BIBLIOGRAPHY

K. L. Chung, Markov Chains with Stationary Transition Probabilities,
Springer-Verlag, Berlin, 1960.

C. Derman, "A solution to a set of fundamental equations in Markov
chains," Proc. Amer. Math. Soc., Vol. 5 (1954), pp. 332-334.

W. Feller, An Introduction to Probability Theory and Its Applications,
Wiley, New York, 1950.

F. G. Foster, "On the stochastic matrices associated with certain
queueing processes,” Ann. Math. Stat., Vol. 24 (1953), pp. 355-360.

S. Karlin and J. McGregor, "The differential equations of birth-
and-death processes, and the Stieltjes moment problem," Trans. Amer.
Math. Soc., Vol. 85 (1957), pp. 489-546.

S. Karlin and J. McGregor, "The classification of birth and death
processes,"” Trans. Amer. Math. Soc., Vol. 86 (1957), pp. 366-400.

J. F. C. Kingman, "Two similar queues in parallel," Ann. Math.
Stat., Vol. 32 (1961), pp. 1314-1323.

D. G. Kendall and G. E. H. Reuter, "The calculation of the ergodic
projection for Markov chains and processes with a countable
infinity of states,” Acta Math., Vol. 97 (1957), pp. 103-1l4k.

R. G. Miller, Jr., "Stationarity equations in continuous time
Markov chains," Technical Report No. 80 (1962), Stanford University,
Contract Nonr-225 (52), (NR-342-022), accepted for publication

in Trans. Amer. Math. Soc.

G. E. H. Reuter, "Denumerable Markov processes and the assoclated
contraction semi-groups on £," Acta Math., Vol. 97 (1957), pp.
1-46.

11

Y SR S



I )

[Ty

Pp—— 4 et 3,

$ e e

e

STANFORD UNIVERSITY
TECHNICAL REPORTS DISTRMBUTION LIST
CONTRACT Newr-225052)

Armed Sorvices Technical Commanding Offioer Document Library
Information Arm Frankford Amnl U.S. Atemic Commission
Arington Hall Statien Library Branch, 0210 Bidg. 40 19th and jon Aves, B, W,
Adingten 12, Virginla 10 !vldn and Tageny Streels Washiagton 28, . C.
Buresu of Supplies and Accounts Phiadeiphia ” " 1 Headquarters
cm‘yoﬁlw Okishema City Ale Matoriel Area
Department of m Reck istand Arsenal United States Alr Foree
Washington 25, 0. C 1 Rock island, Hitnels 1 zulnlan Forco Base,
Head, Logistics and Mathematiesl Commanding General
Redstona Arsenal (ORDOW-QC) institute of Statistics
Oifice of Naval Researsh Huntsville, Alabama 1 North Careling State Cellege of A L E
Code 436 Ralsigh, North Carelina
Washingten 25, 0. C 3
Commanding O oRES TS Do oirane ontitis of Tochnod
cor =T3= chnology
Office of Naval Research Las Cruces, New Maice 1 Atta: A.J. Stosick
Sranch OMfiee 4800 Onk Grove Drive
Navy Ne. 100, Flest P. 0. . Commanding Genersl Pasadora 3, Calfarnia
New York, N. Y, 2 Attn: Paul C. Cont, Ond. muua
White Sands anm Greund . Librarian
Offioar Las Cruces, New Mexice 1 The RAND Coerperation
Offioe of Naval Research 1700 Mais Sireet
Branch OWice ? Santa Menica, Collfernia
goog sn;utw L s u:l“m schnical Documents Conter L Dt
an Franclsce Hernia Corps Enm' ing Laberatery o
! Fort Monmeuth Jorsey 1 Naval Missie Conter Conmand
Commanding Officer U.S. Naval Missile Comter
Office of Naval Researeh - CMMIMMI Atta: J. L. Nicket
Branch Offiee Ordnance Command Point Mugu, Califernia
10th Flosr, The Jehn Crerar Atin: Research Branch
Libeary Bidg. Rock Istand, lilinels 1 Mathematies Divisten
86 East Randeiph Strest Cd- 5077
Chicage 1, lilinels 1 Commanding General Nave! Ordeance Test Statien
u.s. Emle anlu Ground Ulhl Lake, Califernia
Commanding Officer Fot
Offics of Naval Research Atns S echotcal Clorary 1 NASA
Branch Offica Attn: Mr, €.8. Jacksen, Office
346 Breadway Commander of
New York 13, N. Y. 1 Wright Air Develospment Canter 1724 F Street, N. W,
Attn: ARL Tech. L » WCRR Washingten 25, 0, C,
c-..‘mu Wright~Patterson Air Force + Ghtle 1
Olamend Fuse Labs. Natiunal Applied rma Labs,
Washingten 25, D. C. 1 Commander National Buresu of Standards
Commanding Officer ;v-swanuomlm Divisien, WOSIT Washington 25, 0. C.
Pmuﬂm TORDIS-THB) Inpiewoed, Callfomia 1 Navel Inspectar of Ordeance
Dever, Jorsey 1 U,S. Naval Gun Fastery
Chief, Research Divisten 28, 8. C.
Office of Research & tta; Mrs. €. O, Hoek
(OMRO) omu of Chief of Staft
Watertown 72, Massachesells 1 U.S. Army Office, Asst. Chief of Stalf, G4
¢ om Wuhlnoun 25,0. C. 1 a:tmh Im R & D Division
ammand) cer partment Army
WA Chiel, Computing Laborstery Washingten 25, D. C.
Watertown Arsenal Bailistic Research Laberatery
Watertown 72, Massachusetts 1 Aberdeen Proving Ground, Maryland 1 ugq
U.S. Navy Postgraduate School
Comanding Officer Dlrector Monterey, Cailfornia
Waterviiet Lu..l National Smu‘ Agency Attn: Library
Watervilet, New York 1 Attn: REMP-
. Moade, Maryland 2 Technical Information Officer
e Ovisten Director of Opera i s, B
: inspection
$riosfied AWM N Op.uum Anol;tll Olv., AFOOP Teohmical Information Serv
rmation ce
M.;m wuhmm 25,0, C. 1 p oA B Sranch
cer
H Electrenic Research Ok Ridge, Tennesses
"u'nn, DL S tee & Purmairost Researsh "
9560 Teohmical Service Unit Establishwant Technical Libeary Branch
a'.?.'nhvm Calernia 1 12 S'V'ht ngton Al u.s ulvumml.mm
! .1] cn venue .
! Wilmette, {ilinel 1 amun Graves
30 T coiaal Servioe Unit Divector o
Lintsen Prejoct Mishigan Lincoln Laboratery Delense A
R Resoorch Conter Lexingten, Massachusetts 1 'é‘.‘::%..."“ ot nnum Divisten
Youitantl, Michigen ! Department of Mathewstics v M
glﬂur . L"‘:""" f"“.}’“,,‘.",‘"“’ . Pvumt-n. Now Jorsey
esenrch & Development Labs. ast Lansing, a0
Fert Belvelr, Virginia 1

August, 1962

e s st s <

o



Iw:c"t: & 8¢ Bhvicion
i on vigi

Rocu 28870 Wm‘n
oam

wmmzé, . €.

Professer T. W, Anders
Oef

umbla Unlversity
New York 27, New York

Professor Rebert Bechhefer

Dept. dladuwhl and Enginsering
Administrat!

Sibley Sd\»l d Mechanical Engineering

Comnall University

Ithaca, New York

Professor f:dmc An?':m

[+ thesatics

|W of Oregon

Eugene '%um
Professor Z. W. Blmbaum
Department

Seattle 5, Washington

Dr. David Blackwell

Department of Mathematical Sclences
Un! mlty of Californla

Berkelay 4, California

Professor Mnh A, Dulcy

Florida Shu Unlvmlty
Tallshassee, Florida

gf‘. John W.“ Call "

partment of Mathemstics
orth Carolina State College

Ralelgh, North Caroline

Professor Witlam G. Cochran
Oepartment o Statistics

Harvard University
2 Divinity g;ﬂll_n, Roem 311
Mlu Bcsu B. Da

Ships, &nh 3420
Socm 32100'!::!
Washington 25, D.

Opmklom Mnlph Dlv , DCEAD
w--hmgm 25,D. C.
sor
.”'(‘?m trial Engineering
umbla Universi| Rty
New York 27, New York
Or, Donald P, Gaver
West

Research Labs
Mm Churchill Bore,
Pittsburgh 35, Pa,

Mr, Harold Gumbel
H:‘u.! olnnum Research Group

C
Paclne Mlnllo Range
Point Mugu, Callfornia
Dr. bvaw
Office chlii d Research &
U.S, Army, R mnmn-. Sisa2
WnMMM 25,
Professor W, Hirsch
i tical

g'“. Enwlﬁlnm

P e
istics
Merth Caroline

wmmﬂ Nerth Careling

Professor Solomen Kulthack

owdsuwlm

Washington 7,0. C.

Professor W. H. Kruskal
of Stat

Istics
The Liniversity of Chcage
Chlﬁlﬂmh’dl

Profes; E:ru Lukac:
3 sor u.

epartment
Cathollc University
Washington 15, D. C.

Or, Cralg Magwire

2954 vﬁmmw “ﬁ
Rancho Cordeva, Califomia
Professor G. W, McElrath
)] Mechanicel

Unlversity of Minnesots Enpiosering
MY Is 14, Minnesota

Dr. Knox T, Mllluu
Emmln
Al Fm Omu d Sclentific Researoh
Washington 2 . C.

B M ot

ngr. Div,
, San Bernardine Al Matariel Aren
AF Morton Alr Ferce Base, CalMernla

Professor Edwin G. Olds
Dc of Mathematics

Cotlege of Engineering and Sciences
Cunoole Institute of Technology

Plttsburgh 13, Pennsyivanla
Dr. Willlam R, Pabst
Bureau of
Room 0306, Main Navy
Washington 25, D. C.
Mr. Edward Paulson
72-10 41 Ave,
Woodside 77
New York, New York
bt R
Dlamud%vdmo'ﬂu
Room 105, Bullding 83
Washington 25, D. C.
Professor Ronald Pyke
Mathematics Department
University of Washington
Seattle 5’ Washington
%l;»:':: 3‘" elopment Conter, WCRRM

v

Wright-Patterson A.F.8,, Ohle
Professor Herbert Robbine

. of Mathematical Statistics
untln University

York 27, New York

Deparment of dathaerien
Ve

Brown University

Providence 12, Rhode island
Professor Herman Rubin
Oepartment of Sumtln

Mlcmw State Un'versity
East Lansing, Michigan

MSGJ S. Rustagi

College of Medicine
University of Cincinneti
Cinclanatl, Ohio
Professor |, R

R. Savage
Scheol of Bmlmn Admintstration
University of Minneseta
Nimneapelis, Minneseta
Miss Marien M, Sandomire
2281 Cedar Street
Berkeley 9, Californta

i1

i
]
[

Dr. Herry Weli
Specia Bragecs Sfiee, $P2016

De. F. J, + Direcier

Office

¢lonoes Divisien
Researsh

Washingten 25, D, C. 1

Offcn of Mews Raseareh, Code 200
Washingten 25, 0. C. 1

Professor S, $. Wilks
Degertment of

Princeton, Rew Servey 1

Me. Stias Witliams

Welman
ode MER - Bidg. T-2 Reem C301
Jacksen Pl

e

ars

ot



e )

JOINT SERVICES ADVISORY GROUP

Mr. Fred Frishman

;e Army Research Office

j Arlington Hall Station
Arlington, Virginia

Mrs. Dorothy M. Gilford
Mathematical Sciences

Division
Office of Naval Research

Washington 25, D. C.

. Dr. Robert Lundegard
§ Logistice and Mathematical
Statistics Branch
Office of Naval Research
Washington 25, D, C.

Mr. R. H. Noyes

Inst. for Exploratory Research
USASRDL

Fort Monmouth, New Jersey

Lt. Col. John W, Querry, Chief

Applied Mathematics Division

Air Force Office of Scientific
Research

Washington 25, D. C. 1l

Major Oliver A. Shaw, Jr.

Mathematics Division

Alr Force Office of Scientific
Research

Washington 25, D. C. 2

Mr. Carl L. Schaniel
Code 122
U.8. Naval Ordnance Test
Station
China lLake, California 1l

Mr, J. Weinstein

Institute for Exploratory Research
USASRDL

Fort Monmouth, New Jersey 1




